
Comparative analysis of extrinsic and intrinsic
cohesive models of dynamic fracture

Dhirendra V. Kubair, Philippe H. Geubelle *

Department of Aeronautical and Astronautical Engineering, Center for the Simulation of Advanced Rockets, 306 Talbot

Laboratory, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801, USA

Received 1 November 2002; received in revised form 14 March 2003

Abstract

A comparative analysis of intrinsic and extrinsic cohesive models has been performed for the case of spontaneous

and steady-state dynamic crack propagation. Spontaneous crack propagation was simulated using a spectral form of

the elastodynamic boundary integral equation, while steady-state solutions were obtained by numerically integrating

the governing Cauchy singular integral equation. Spontaneous crack propagation results showed that intrinsic models

are less numerically stable than the extrinsic ones. Under steady-state propagation conditions, some intrinsic cohesive

models lead to unrealistic results as the crack opening velocity becomes negative at the cohesive zone tip. By imposing a

positive crack opening acceleration at the cohesive zone tip, the envelope of the required minimum initial strength has

been calculated.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since their introduction by Dugdale (1960) and Barenblatt (1962), cohesive zone models have been

widely used in the theoretical and numerical treatment of quasi-static and dynamic fracture events. Co-

hesive zone models have recently been the object of a surge in interest, as they constitute the foundation of a

new class of finite element schemes referred to as cohesive–volumetric finite element (CVFE) schemes

developed especially for the simulation of fracture problems involving the spontaneous initiation, propa-
gation and possible arrest of one or more cracks. As the CVFE denomination indicates, these schemes

consist in a combination of conventional (volumetric) finite elements used to capture the mechanical res-

ponse of the material, and interfacial (cohesive) elements used to model the progressive failure of the

medium in the vicinity of the crack front.
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Two basic approaches have been proposed to implement cohesive failure models in the CVFE scheme.

The first approach, referred to as the intrinsic method, characterizes the cohesive element response by a

traction–separation curve that, starting from the origin, has a hardening (rising) portion that denotes an

increasing resistance of the cohesive surface to separation. When sufficient separation is achieved, the
cohesive traction reaches a maximum value corresponding to the failure strength sc of the material. The

traction–separation curve then follows a weakening (decreasing) portion associated with the failure pro-

cess. When the separation d reaches a critical value dc, the cohesive traction s is assumed to vanish,

leading to the creation of a traction-free surface (i.e., a crack) in the discretised domain. The area under

the traction–separation curve corresponds to the fracture toughness Gc of the material. This approach was

first introduced within the context of the finite element method by Needleman (1987), who used a

polynomial form for the traction-separation law in the modeling of void nucleation associated with

particle debonding. Other cohesive models used in fracture simulations include exponential (Needleman,
1997), bilinear (Geubelle and Baylor, 1998) and trapezoidal (Tvergaard and Hutchinson, 1992) formu-

lations.

The second approach, referred to as extrinsic, relies on the modeling of the failure (decreasing) portion of

the cohesive law only. In other words, in this model, the cohesive traction is set equal to the material

strength. Various models have been introduced to represent the damage dependence of cohesive strength.

The initial model by Dugdale (1960) and Barenblatt (1962) assumed that the strength remains constant up

to the critical value of the displacement jump dc. Yoshiaki and Aki (1972) introduced a damage-dependent

cohesive law for which the strength decreases from its original value sc to zero. The most common model of
that type is the linear model used extensively in a variety of dynamic fracture simulations based on the

spectral scheme (Geubelle and Rice, 1995) and the CVFE scheme (Camacho and Ortiz, 1996). As was the

case before, the area under the curve corresponds to the fracture toughness Gc of the material. This par-

ticular model is referred to as extrinsic because, unlike in the intrinsic case for which the damage initiation

criterion is inherently contained in the model, this second approach requires the introduction of a separate

criterion for the initiation of the failure process (i.e., for the introduction of cohesive elements in the CVFE

scheme).

However, while both approaches are based on very similar concepts, the intrinsic and extrinsic models
present some important differences, the effect of which is not completely understood. In a recent pub-

lication, Falk et al. (2001) have presented a comparative study of dynamic crack branching using in-

trinsic and extrinsic CVFE codes. They showed some important differences between the two methods.

The objective of the present paper is somewhat different: it aims at shedding some light on the simi-

larities and differences between these two cohesive zone models with regards to the fundamental problem

of the steady-state and transient motion of a mode 3 crack propagating dynamically along its original

plane in a linearly elastic medium. The analysis is performed in terms of the general cohesive model

shown in Fig. 1, which combines the characteristics of both extrinsic and intrinsic cohesive models:
like extrinsic models, it starts from a finite initial strength si, but, as in the intrinsic case, it is not

monotonic.

This study builds on the quasi-static results presented by Ungsuwarungsri and Knauss (1988a,b), who

used the same model as that described in Fig. 1 and observed that only a limited strengthening is possible in

order to obtain physically meaningful solutions to the cohesive variables. This issue is revisited here in the

more general case of steady-state and transient crack propagation. The spectral scheme (Geubelle and Rice,

1995) is used in our spontaneous crack propagation simulations, while, under steady-state setting, the

governing Cauchy singular equation relating the cohesive tractions and the slope of the displacement jumps
is solved (Kubair et al., 2003). This paper is organized in the following manner: in Section 2, the mathe-

matical description of the general cohesive model used in this study is presented, followed, in Section 3, by

the results of the spectral scheme simulations of spontaneous dynamic crack motion. The last section

summarizes the results of the steady-state analysis.
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2. Cohesive zone model

As indicated above, the analysis summarized hereafter is performed in the simpler mode 3 case. It is

important to note however that the conclusions relative to the intrinsic and extrinsic cohesive models drawn
from the mode 3 analysis can be directly translated to the other pure modes of fracture (Kubair et al., 2003).

The cohesive model described here is a combination of both intrinsic and extrinsic type laws and is depicted

in Fig. 1.

Mathematically, the cohesive law can be written as

t ¼ ð1
��

� tiÞ d
dh

þ ti
�
Hðdh � dÞ þ 1� d

1� dh

� �
Hðd � dhÞ

�
; ð1Þ

where h/i ¼ / for / > 0 and zero otherwise, and H is the Heaviside function. In (1), t and ti are defined in

terms of the cohesive traction s3, the critical strength sc3 and the initial strength si3 as

t ¼ s3
sc3
; ti ¼ si3

sc3
: ð2Þ

In the general case, the cohesive traction s3 is specified as an explicit function of the displacement jump d3.

For these models referred to hereafter as damage-dependent models, d and dh in Eq. (1) denote the nor-

malized displacement jumps

d ¼ d3

dc
3

; dh ¼ dh
3

dc
3

; ð3Þ

where d3 is the crack opening displacement, dc
3 is the critical crack opening displacement and dh

3 is refer-

red to as the hardening displacement, i.e., the displacement jump corresponding to the critical strength sc3

normalized displacement jump (δ /δc )
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Fig. 1. General intrinsic cohesive zone model.
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(Fig. 1). When the initial strength is less than the critical strength (ti < 1), the cohesive model is intrinsic.

When ti ¼ 1 with dh ¼ 0, it represents the extrinsic model. The area under the traction–separation curve

represents the fracture toughness and has a simple closed-form expression when the model is damage

dependent. However, only a numerical solution is possible for the cohesive zone variables d3 and s3 when
the cohesive model is damage dependent, i.e., when d in (1) denotes the normalized displacement jump as in

(3). A closed-form expression for the cohesive zone variables is however possible under steady-state

propagation conditions when the cohesive traction s3 is no longer an explicit function of the displacement

jump d3 but is expressed in terms of the cohesive zone coordinate x1 and this simplified case, referred to

hereafter as spatially dependent cohesive models.

In that case, the variables d and dh entering (1) are defined by

d ¼ x1
Lc3

; dh ¼ Lh

Lc3

; ð4Þ

where Lc3 is the cohesive zone length and Lh is the portion in the cohesive zone in which strengthening

occurs and henceforth referred to as the hardening length, i.e, the spatial position corresponding to the

critical strength sc3. The spatially dependent and damage-dependent models have similar solution charac-

teristics. Therefore, closed-form solutions obtained for the spatially dependent cohesive law provide

valuable insight on the cohesive modeling of fracture.

3. Transient spontaneous crack propagation

A numerical technique recently developed for the analysis of fundamental dynamic fracture problems,

the spectral scheme (Geubelle and Rice, 1995) is used here to simulate the spontaneous transient motion of

a mode 3 crack. The spectral scheme is a special form of the elastodynamic boundary integral formulation

and is best suited for the analysis of the failure process taking place in the vicinity of a spontaneously

propagating planar crack embedded in an infinite, linearly elastic medium. It allows for the incorporation
of a wide range of intrinsic and extrinsic cohesive failure models. The integral relation between the traction

stresses acting on the fracture plane and the resulting displacement jump and its rate for a mode 3 crack was

implemented by Morrissey and Geubelle (1997). The expression relating the traction on the fracture plane

to the displacement jump and its rate is given by

s3ðx1; tÞ ¼ s03ðx1; tÞ � l
_dd3ðx1; tÞ

cs
þ f3ðx1; tÞ; ð5Þ

where s3 and d3 respectively denote the traction stress and displacement jump along the plane x2 ¼ 0, s03
corresponds to the externally applied stress that would be present on the fracture plane in the absence of the

crack, l is the shear modulus and cs ¼
ffiffiffiffiffiffiffiffi
l=q

p
is the shear wave speed with q being the density of the

material. In the above equation, f3 is the convolution term and is expressed in the Fourier domain as a

convolution over the past displacement jump history as

fd3ðx1; tÞ; f3ðx1; tÞg ¼ fD3ðk; tÞ; F3ðk; tÞgeikx1 ; ð6Þ
with

F3ðk; tÞ ¼ � ljkj
2

Z t

�1
H3ðjkjcst0ÞD3ðk; t � t0Þjkjcs dt0; ð7Þ

where k is the spectral mode number. In (6) and (7), F3ðk; tÞ and D3ðk; tÞ are the time-dependent Fourier

coefficients of the convolution term f3ðx1; tÞ and crack opening displacement d3ðx1; tÞ, respectively. The
convolution kernel H3 for the mode 3 case is given by
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H3 ¼
J1ðT Þ
T

; ð8Þ

where J1 is the Bessel function of the first kind. Similar relations have been derived for the other fracture

modes (Geubelle and Rice, 1995). To simulate the spontaneous motion of the planar crack, the integro-

differential relation (5) on the fracture plane needs to be supplemented with a cohesive failure model and in

the present study, the general intrinsic damage-dependent cohesive law (1) is used.

To understand the effect of the various parameters entering the general cohesive law (1) on the transient

motion of the mode 3 crack, the model fracture problem shown in Fig. 2 is solved. A 2-D planar crack of
initial length a0 subjected to uniform antiplane shear loading propagates spontaneously along the fracture

plane. Crack growth is restricted to half of the domain length (X=2) to avoid the replication effects that arise

due to the spectral representation (6) (Geubelle andRice, 1995). The length X of the domain is set to 16a0. The
accuracy of the spectral scheme depends on the number of terms chosen in the Fourier series representation of

the solution. A convergence study was performed by varying the number of sampling points from 256 (28) to

8192 (213), and revealed that a minimum of 1024 (210) terms are required to obtain spatial convergence. This

discretisation leads to a sampling point spacing Dx ¼ a0=256. The time step size Dt ¼ 0:2Dx=cs is used to

achieve a numerically stable solution. In our simulations, the shear modulus and the maximum strength are
chosen to be l ¼ 10 MPa and sc3 ¼ 1 MPa, respectively. The critical crack opening displacement dc

3

(a0=556 dc
3 6 a0=30) and hardening displacement dh

3 (0:01d
c
3 6 dh

3 6 dc
3) are varied in the present study.

Snapshots of the normalized crack opening profile d3 are shown in Fig. 3. The extent of the cohesive zone

is indicated by the horizontal dotted lines d3=d
c
3 ¼ 
1. These snapshots were recorded at constant time

intervals of csDt=a0 ¼ 0:65. As apparent in the figure, the separation distance between successive crack

profiles is almost constant, indicating that the crack has reached a quasi-steady state propagation regime.

The crack tip position of the respective snapshots corresponding to both the extrinsic and intrinsic models

are almost at the same spatial position, which indicates that the propagation velocity of the crack is the
same for these two models. Due to lack of cohesion at the cohesive zone tip in the intrinsic model, the entire

crack plane separates by the initial displacement di
3 given by

di
3

dc
3

¼ s03
sc3

dh
3

dc
3

: ð9Þ

X1

X2

τ o

ao

X

3

Fig. 2. Model dynamic fracture problem used in the spectral simulations.
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Fig. 3. Comparison of the crack profiles for extrinsic (case �a�) and intrinsic (case �b�) cohesive models. To avoid overlapping, the

profiles for the intrinsic cohesive model are shown as negative. The profiles are for an external load of s03 ¼ 0:6sc3 and critical crack

opening dc
3 ¼ 0:0267a0. The hardening displacement was chosen to be dh

3 ¼ 0:2dc
3 in the intrinsic model.

Fig. 4. Traction stress and opening displacement history at a point located at a distance 4.4a0 away from the initial right crack tip. The

critical crack opening displacement is dc
3 ¼ 0:0267a0 and the crack is subjected to a loading of amplitude s03 ¼ 0:5sc3. The intrinsic

models considered here have an initial strength si3 ¼ 0. With decrease in the hardening displacement dh
3 the curves for the displacement

history tend towards the extrinsic model (solid curve).
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As apparent in Fig. 3, the length of the cohesive zone is larger for the intrinsic model compared to that

obtained for the extrinsic model and the crack opening profile is quite different.

The effect of varying the hardening displacement dh
3 is illustrated in Fig. 4 by tracking the shear stress r23

and opening displacement d3 at a point located at a distance 4.4a0 away from the initial right crack tip. The
crack has reached a quasi-steady state of propagation when it has arrived at this point of observation. In

the extrinsic case, the displacement remains zero until the crack reaches the observation point and the

cohesive failure begins only once the cohesive zone tip reaches this point. Once the crack tip reaches the

point of observation, the cohesive traction vanishes. With the intrinsic cohesive model, the scenario is quite

different: at the instant the load is applied, the entire crack plane separates as the cohesive traction becomes

equal to the applied loading. As mentioned earlier, the initial displacement increases with the hardening

displacement (Eq. (9)). As the crack approaches the observed point, the crack opening displacement in-

creases, which triggers the strengthening process. Once the cohesive tractions reaches the maximum (criti-
cal) strength, the weakening process begins. The opening velocity, which remained small during the

strengthening phase, increases rapidly in the weakening portion. The opening velocity and the rate of decay

of the cohesive tractions in the weakening portion increase with the hardening displacement, resulting in a

reduction of the duration of the weakening process. The duration of the cohesive action in the intrinsic

model includes both the hardening and weakening processes, as opposed to the exclusive weakening process

in the extrinsic model. Since the crack has reached a quasi-steady state of propagation when it reaches the

observation point, a longer duration of the cohesive failure process in the intrinsic model directly translates

into a longer cohesive zone. This increase in the cohesive zone length is also illustrated by the crack profile
snapshots shown in Fig. 3. With the decrease in the hardening displacement, the weakening portion for the

intrinsic model tends towards the extrinsic model. Theoretically, when dh
3 is zero, curves from both the

extrinsic and intrinsic models will become coincident.

It is also worth noting however that, as the hardening displacement dh
3 decreases, the numerical im-

plementation of the intrinsic model becomes increasingly unstable. To investigate this issue of stability, a

systematic error analysis has been performed to determine the maximum value of the time step size

(characterized by the non-dimensional parameter b ¼ csDt=Dx) that provides a converged and stable so-

lution. The simulations were performed with 2048 term in the Fourier series, and the intrinsic cohesive
models had si3 ¼ 0. The reference value of b was chosen as bR ¼ 0:1 since this value led to a time-converged

solution for the entire range of the hardening displacement tested in this study (0:016 dh
3=d

c
3 6 0:05). The

error measure used to quantify numerical convergence was chosen as the relative difference (e) on the time

integral of the traction stress s3 recorded at a distance a0 ahead of the initial crack tip:

e ¼
R T
0

s3ðtÞdtR T
0

sR3 ðtÞdt
� 1; ð10Þ

where sR3 ðtÞ corresponds to the reference time history corresponding to bR ¼ 0:1 and the integration is

performed from t ¼ 0 until the end of the failure process (t ¼ T ) at the point of observation. The solution is

said to be time converged when e < 1%. For higher values of the time step (Dt or b), numerical oscillations
begin to affect the precision of the solution (as illustrated in Fig. 4) and may ultimately lead to the complete

instability of the numerical scheme. The resulting stability map is presented in Fig. 5, in which the

aforementioned effect of the hardening displacement on the stability of the numerical scheme is clearly

visible. It is worth noting that the implementation of the extrinsic model achieves convergence for b ¼ 0:4.
The crack profiles obtained for the general cohesive model with si3 > 0, are similar to those for the in-

trinsic case (si3 ¼ 0) shown in Fig. 3. As expected, when the applied load is greater than the initial strength,

the entire crack plane separates by di
3 before the actual cohesive process begins, while for loads less than the

initial strength the initial displacement is zero. The initial displacement di
3 in terms of the external load,

initial strength and hardening displacement is given by
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di
3

dc
3

¼ s03 � si3
sc3 � si3

� �
dh
3

dc
3

; ð11Þ

where h/i ¼ / for / > 0 and zero otherwise.
The energetics involved in the failure process for a general cohesive model is depicted in Fig. 6, which

presents the history of the rate of energy release defined as

_EE3 ¼
Z

s3 _dd3 dx; ð12Þ

where _dd3 is the crack opening velocity. The integration in Eq. (12) is performed over the cohesive length Lc3 ,

defined as the portion of the fracture plane for which di
3 6 d3 6 dc

3, where di
3 is the initial displacement of the

entire crack plane defined in Eq. (11). The rate of energy release is normalized by the fracture toughness Gc
3

given by the area under the traction–separation curve

Gc
3 ¼

sc3d
c
3

2
1

	
þ si3d

h
3

sc3d
c
3



: ð13Þ

Note that for any combinations of non-zero initial strength and hardening displacement, the fracture

toughness for the intrinsic model is greater than the extrinsic model for the same critical strength (sc3) and
critical crack opening displacement (dc

3). The effect of applying a loading amplitude either greater or smaller

than the initial strength is also illustrated in this figure. When the loading amplitude is less than the initial

strength, the energy evolution for both the extrinsic and intrinsic models are similar. Note also the existence

of a quasi-steady-state regime of propagation indicated by the quasi-constant value of the rate of energy
release attained after the crack has grown by a sufficient distance. The above observation is the motivation

for the steady-state analysis presented next.
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Fig. 5. Stability map illustrating the effect of the hardening parameter (dh
3) on the maximum allowable time step size. The fracture

parameters used to obtained this map were dc
3 ¼ 0:0267a0 and s03 ¼ 0:5sc3.
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4. Steady-state propagation

We now consider the basic problem of a semi-infinite crack propagating at a steady velocity vc under
anti-plane strain conditions in a linearly elastic solid. A moving Cartesian coordinates ðx1; x2Þ is defined

with its origin following the crack tip. The crack is subjected to an external crack plane loading s03 over the
entire crack plane, as shown in Fig. 7. The material properties in this steady-state analysis are chosen to be

the same as that in the spontaneous crack propagation simulations (sc3 ¼ 1 MPa, l ¼ 10 MPa). Under

steady-state propagation, the slope of the displacement jump is related to the cohesive tractions by the
Cauchy singular integral equation (Kubair et al., 2003)

d0
3ðxÞ ¼

A3

p
sc3
l

Z 1

0

ffiffiffi
x
g

r
t

ðx� gÞ dg; ð14Þ

time (cs t /ao )
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Fig. 6. Comparison of the energetics of the spontaneous crack propagation for the extrinsic and intrinsic models. The results shown

here correspond to a hardening displacement dh
3 ¼ 0:1dc

3 and a loading amplitude s03 ¼ 0:4sc3.
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Fig. 7. Steady-state fracture problem.
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where d0
3 ¼ dd3=dx, t has been defined in (2), and

x ¼ �x1
Lc3

; A3 ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðvc=csÞ2
q : ð15Þ

Lc3 is the length of the cohesive zone, which is determined by satisfying the following condition at the
cohesive zone tip:

d3ðx ¼ 1Þ ¼ dc
3; ð16Þ

where dc
3 is the critical crack opening displacement. As mentioned earlier, a closed-form expression for d0

3 is

possible only for a spatially dependent cohesive law. For some general damage-dependent cohesive law, a

numerical quadrature of the governing Cauchy singular equation is required to obtain a solution. Details of

the numerical quadrature and Picard�s iteration schemes can be found in the paper by Kubair et al. (2003).

The damage-dependent intrinsic model introduced in Section 2 has been analyzed under steady-state
conditions and our results show that physically meaningful results are possible only for a range of non-zero

values of the initial strength si3. Similar observation have been made by Ungsuwarungsri and Knauss

(1988b) in their analysis of equilibrium crazes: they concluded that only limited strengthening was possible

under steady-state propagation. However, our spectral simulations did not exhibit any numerical difficulty

in the solution procedure. In order to illustrate the non-existence of a physically meaningful solution for a

range of initial strengths si3, a closed-form expression for d0
3 using the spatially dependent cohesive model

described by Eqs. (1), (2), (4) has been obtained:

pl
A3sc3

d0
3ðfÞ ¼ 2 1

	
� si3

sc3


 ffiffiffiffiffi
f
Lh

s
tanh�1

ffiffiffiffiffi
Lh

f

r� �(
� 1

) ffiffiffiffiffi
f
Lh

s
þ 2

si3
sc3

tanh�1

ffiffiffiffiffi
Lh

f

r� �

þ 2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh=Lc3

p
Þ

1� Lh=Lc3

ffiffiffiffiffiffi
f
Lc3

s
þ 2

1� Lh=Lc3

1

	
� f
Lc3



tanh�1

ffiffiffiffiffiffi
Lc3

f

r� �	
� tanh�1

ffiffiffiffiffi
Lh

f

r� �

;

ð17Þ

where f ¼ �x1 P 0. This solution for the spatially dependent cohesive law is similar to that obtained with

the damage-dependent cohesive law and will be illustrated later with the results. The closed-form solution

(17) for the spatially dependent model shows that a physically meaningful solution for d0
3 is possible only for

a range of initial strengths si3. Indeed, an analysis of the closed-form expression for d0
3 (Eq. (17)) reveals

that, when si3 ¼ 0, the second slope of the displacement (d00
3), which is analogous to crack opening accele-

ration (€dd3), becomes negative at the cohesive tip. The negative opening acceleration leads to a nega-

tive energy (s3d
0
3 < 0), violating the second law of thermodynamics and hence physically unacceptable

(Costanzo and Allen, 1995). Under mode 1 loading, a negative crack opening acceleration and velocity

lead to interpenetration of the crack faces, which is again physically unrealistic. A closed-form expression

relating the minimum initial strength required si3min
and the hardening length Lh was obtained by imposing

a zero value for the crack opening curvature at the cohesive zone tip:

lim
x1!0

½ ffiffiffiffi
x1

p
d00� ¼ 0 ) si3min

¼ sc3
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh=Lc3

p 8Lh 2 ð0; Lc3Þ: ð18Þ

For the damage-dependent model, a closed-form expression for the required minimum initial strength is not

possible. However we found the following expression

si3min
� sc3

1þ b
ffiffiffiffiffiffiffiffiffiffiffi
dh
3=d

c
3

q ; ð19Þ
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to fit the numerical values quite well with b ¼ 2:5. The minimum initial strength required (si3min
) as a

function of the hardening length (Lh) and hardening displacement (dh
3) is shown in Fig. 8. A similar study

using the trapezoidal cohesive model analogous to that used by Tvergaard and Hutchinson (1992) is

summarized in Appendix A. To conclude this discussion of the minimum value of the initial strength, it is

interesting to note that the existence of a similar negative opening velocity has also been observed by

Marder and Gross (1995) in their quasi-steady state 1-D and 2-D molecular dynamics simulations of

fracture instabilities with a quite different fracture model.

The length Lc3 of the cohesive zone can be determined by satisfying the following condition:

p
A3

s03
sc3

ffiffiffiffiffiffi
dc
3

Lc3

s
¼

Z 1

0

tffiffiffi
g

p dg ¼ 4

3

si3
sc3

ffiffiffiffiffiffi
Lh

Lc3

s(
þ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh=Lc3

p
)
; ð20Þ

for the spatially dependent cohesive model. From the above expression, we can see that the amplitude of the

externally applied load is always less than the initial strength si3 under steady-state propagation conditions.

Similar conclusions about the loading amplitude in the damage-dependent model can be reached due to the

similarity between the spatially dependent and damage-dependent models.

As seen from the spectral scheme simulations, the entire crack plane separates by an amount di
3 (Eqs. (9)

and (11)), when the initial strength is zero or when the applied load is greater than the initial strength.
Steady-state solution with a prescribed initial displacement is possible by superposing a constant opening

displacement, as it does not alter the governing Cauchy singular equation (14). However, our steady-state

analysis showed that only initial displacements corresponding to an initial strength si3 P si3min
converge

to a physically meaningful solution and the relation between the initial displacement and initial strength

is given by

Lh / Lc , δh
3 /δc

3

τi 3
/τ

c 3
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τ i
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τ i
3 (δh
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3 (δh
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3

Fig. 8. Minimum initial strength required to obtain a physically meaningful steady-state solution as a function the hardening distance

Lh (for the spatially dependent model) and the hardening displacement dh
3 (for the damage-dependent model). The functional form of

si3min
is given by Eqs. (18) and (19).
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di
3

dc
3

¼ si3
sc3 � si3

	 

dh
3

dc
3

: ð21Þ

In order to compare results from the spectral scheme with those obtained in the steady-state case,

the point history of the cohesive traction s3 and crack opening displacement d3 have been tracked at

a point sufficiently far away from the initial crack tip position (4.4a0), where quasi-steady-state of
propagation prevailed in our simulations (Fig. 9). The spatial coordinates of the steady-state solution

have been transformed into time for the sake of comparison and the two solutions are in good

agreement.

The spatial distribution of the slope of the crack sliding displacement in the cohesive zone is shown in

Fig. 10. As mentioned earlier, under steady-state propagation conditions, d0
3 is equivalent to the crack

sliding velocity _dd3. In the intrinsic model, the discontinuity in the slope of the cohesive traction/separation

curve results in an inflection point in the spatial variation of d0
3 at x1 ¼ Lh. However, the variation of d0

3 in

the weakening portion of the cohesive zone is similar to that for the extrinsic model and can be attributed to
the same damage mechanism taking place in both models.

The normalized crack opening profiles for both the extrinsic and intrinsic models are shown in Fig. 11.

In order to compare the crack opening profiles obtained from the spectral simulations, the initial strength

and hardening displacements are chosen to be the same as those in the results shown in Fig. 3. The cohesive

zone is longer in case of the intrinsic model as indicated by the smaller amplitude of the opening dis-

placement at the cohesive zone tip (dc
3=Lc3 ) for the intrinsic model. As seen from the spectral results (Fig. 3),

the crack opening profiles in the intrinsic model has two distinct variations in the cohesive zone, one below

and another above the hardening displacement dh
3. The variation of the crack opening displacement in the

weakening region is similar to that obtained with the extrinsic model.

cs t /ao

τ 3
/τ
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δ 3
/δ

3c
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0
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0.4

0.6

0.8
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Fig. 9. Comparison of the steady-state results with the point history from the spectral simulations. The spectral results were obtained

for s03 ¼ 0:5sc3, d
c
3 ¼ 0:0267a0 and dh

3 ¼ 0:1dc
3 with a zero initial strength which resulted in a initial displacement di

3 ¼ 0:05dc
3. A constant

initial displacement jump was superposed on the steady-state solution for d3 which led to an initial strength of si3 ¼ 0:6sc3. The spatial
coordinates of the steady-state solution have been transformed into time for the sake of comparison (vc ¼ 0:92cs).
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Fig. 11. Crack sliding profile in the cohesive zone for the extrinsic and intrinsic cohesive models. The fracture parameters in this figure

are identical to those in Fig. 10. The opening profiles are similar to those obtained by the spectral scheme shown in Fig. 3.
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Fig. 10. Slope of the displacement jump for the extrinsic and intrinsic cohesive models. For the damage-dependent model, si3 ¼ 0:6sc3
and dh

3 ¼ 0:2dc
3.
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5. Conclusions

A comparative analysis of extrinsic and intrinsic cohesive models has been performed under both

spontaneous and steady-state dynamic crack propagation conditions. The results of the spontaneous
simulations indicate that the implementation of intrinsic models is less numerically stable than that of the

extrinsic models. The propagation velocity and energetics of the crack obtained with the intrinsic and

extrinsic models are similar but details of the cohesive zone, namely the cohesive zone length and the crack

opening profile, are somewhat different.

Under steady-state propagation conditions, a vanishing initial strength at the cohesive zone tip leads to a

negative crack opening acceleration, which in turn leads to negative crack opening slope, leading to a

physically unacceptable solution. By imposing a positive crack opening acceleration at the cohesive zone

tip, the envelope of the minimum initial strength required was calculated in terms of the hardening dis-
placement (or length).
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Appendix A. Cohesive model with dwell portion

We obtain here the steady-state solution for the more general intrinsic cohesive model shown in Fig. 12

and expressed by

t ¼ ð1
��

� tiÞ d
dh

þ ti
�
Hðdh � dÞ þHðd � dhÞ þ 1� d

1� dd

�
� 1

�
Hðd � ddÞ

�
; ðA:1Þ
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Fig. 12. Intrinsic cohesive law similar to the trapezoidal model introduced by Tvergaard and Hutchinson (1992).
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where dd is the dwell distance which is defined as dd ¼ Ld=Lc3 for a spatially dependent model and

dd ¼ dd
3=d

c
3 for a damage-dependent model, with dd

3 being the dwell displacement. When dh ¼ dd, (A.1)

reverts to (1) and, when ti ¼ 0, (A.1) recovers the Tvergaard and Hutchinson (1992) trapezoidal cohesive

model in the damage-dependent case. Closed-form expression for the slope of the displacement jump is
possible for the spatially dependent model, and is given by

pl
A3sc3

d0
3ðfÞ ¼ 2 1

	
� si3

sc3


 ffiffiffiffiffi
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Lh

s
tanh�1

ffiffiffiffiffi
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� 1

) ffiffiffiffiffi
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ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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Þ
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ffiffiffiffiffi
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f

r� �

; ðA:2Þ

where f ¼ �x1 P 0. As expected, when the hardening length and the dwell length are the same, the above

equation recovers Eq. (17).

The minimum initial strength required to obtain physically meaningful results under steady-state

propagation conditions is found by limiting
ffiffiffiffi
x1

p
d00
3ðx1 ! 0Þ ¼ 0 and is given by

si3min

sc3
¼ 1� 1

2

ffiffiffiffiffi
Lh

Ld

r
� ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ld=Lc3

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh=Lc3

p
� ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh=Lc3

p
Þ

2ð1� Lh=Lc3Þ
: ðA:3Þ

Note that this minimum initial strength is greater than the minimum initial strength given by Eq. (18) when

dd > dh.
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