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Abstract

A comparative analysis of intrinsic and extrinsic cohesive models has been performed for the case of spontaneous
and steady-state dynamic crack propagation. Spontaneous crack propagation was simulated using a spectral form of
the elastodynamic boundary integral equation, while steady-state solutions were obtained by numerically integrating
the governing Cauchy singular integral equation. Spontaneous crack propagation results showed that intrinsic models
are less numerically stable than the extrinsic ones. Under steady-state propagation conditions, some intrinsic cohesive
models lead to unrealistic results as the crack opening velocity becomes negative at the cohesive zone tip. By imposing a
positive crack opening acceleration at the cohesive zone tip, the envelope of the required minimum initial strength has
been calculated.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since their introduction by Dugdale (1960) and Barenblatt (1962), cohesive zone models have been
widely used in the theoretical and numerical treatment of quasi-static and dynamic fracture events. Co-
hesive zone models have recently been the object of a surge in interest, as they constitute the foundation of a
new class of finite element schemes referred to as cohesive-volumetric finite element (CVFE) schemes
developed especially for the simulation of fracture problems involving the spontaneous initiation, propa-
gation and possible arrest of one or more cracks. As the CVFE denomination indicates, these schemes
consist in a combination of conventional (volumetric) finite elements used to capture the mechanical res-
ponse of the material, and interfacial (cohesive) elements used to model the progressive failure of the
medium in the vicinity of the crack front.
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Two basic approaches have been proposed to implement cohesive failure models in the CVFE scheme.
The first approach, referred to as the intrinsic method, characterizes the cohesive element response by a
traction—separation curve that, starting from the origin, has a hardening (rising) portion that denotes an
increasing resistance of the cohesive surface to separation. When sufficient separation is achieved, the
cohesive traction reaches a maximum value corresponding to the failure strength ¢ of the material. The
traction—separation curve then follows a weakening (decreasing) portion associated with the failure pro-
cess. When the separation J reaches a critical value &°, the cohesive traction 7 is assumed to vanish,
leading to the creation of a traction-free surface (i.e., a crack) in the discretised domain. The area under
the traction—separation curve corresponds to the fracture toughness G° of the material. This approach was
first introduced within the context of the finite element method by Needleman (1987), who used a
polynomial form for the traction-separation law in the modeling of void nucleation associated with
particle debonding. Other cohesive models used in fracture simulations include exponential (Needleman,
1997), bilinear (Geubelle and Baylor, 1998) and trapezoidal (Tvergaard and Hutchinson, 1992) formu-
lations.

The second approach, referred to as extrinsic, relies on the modeling of the failure (decreasing) portion of
the cohesive law only. In other words, in this model, the cohesive traction is set equal to the material
strength. Various models have been introduced to represent the damage dependence of cohesive strength.
The initial model by Dugdale (1960) and Barenblatt (1962) assumed that the strength remains constant up
to the critical value of the displacement jump &°. Yoshiaki and Aki (1972) introduced a damage-dependent
cohesive law for which the strength decreases from its original value 7° to zero. The most common model of
that type is the linear model used extensively in a variety of dynamic fracture simulations based on the
spectral scheme (Geubelle and Rice, 1995) and the CVFE scheme (Camacho and Ortiz, 1996). As was the
case before, the area under the curve corresponds to the fracture toughness G° of the material. This par-
ticular model is referred to as extrinsic because, unlike in the intrinsic case for which the damage initiation
criterion is inherently contained in the model, this second approach requires the introduction of a separate
criterion for the initiation of the failure process (i.c., for the introduction of cohesive elements in the CVFE
scheme).

However, while both approaches are based on very similar concepts, the intrinsic and extrinsic models
present some important differences, the effect of which is not completely understood. In a recent pub-
lication, Falk et al. (2001) have presented a comparative study of dynamic crack branching using in-
trinsic and extrinsic CVFE codes. They showed some important differences between the two methods.
The objective of the present paper is somewhat different: it aims at shedding some light on the simi-
larities and differences between these two cohesive zone models with regards to the fundamental problem
of the steady-state and transient motion of a mode 3 crack propagating dynamically along its original
plane in a linearly elastic medium. The analysis is performed in terms of the general cohesive model
shown in Fig. 1, which combines the characteristics of both extrinsic and intrinsic cohesive models:
like extrinsic models, it starts from a finite initial strength 7', but, as in the intrinsic case, it is not
monotonic.

This study builds on the quasi-static results presented by Ungsuwarungsri and Knauss (1988a,b), who
used the same model as that described in Fig. 1 and observed that only a limited strengthening is possible in
order to obtain physically meaningful solutions to the cohesive variables. This issue is revisited here in the
more general case of steady-state and transient crack propagation. The spectral scheme (Geubelle and Rice,
1995) is used in our spontaneous crack propagation simulations, while, under steady-state setting, the
governing Cauchy singular equation relating the cohesive tractions and the slope of the displacement jumps
is solved (Kubair et al., 2003). This paper is organized in the following manner: in Section 2, the mathe-
matical description of the general cohesive model used in this study is presented, followed, in Section 3, by
the results of the spectral scheme simulations of spontaneous dynamic crack motion. The last section
summarizes the results of the steady-state analysis.
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Fig. 1. General intrinsic cohesive zone model.

2. Cohesive zone model

As indicated above, the analysis summarized hereafter is performed in the simpler mode 3 case. It is
important to note however that the conclusions relative to the intrinsic and extrinsic cohesive models drawn
from the mode 3 analysis can be directly translated to the other pure modes of fracture (Kubair et al., 2003).
The cohesive model described here is a combination of both intrinsic and extrinsic type laws and is depicted

in Fig. 1.
Mathematically, the cohesive law can be written as
_ nd h 1—d h
t<{(1—t)dh+t}H(d d)+L_dh]H(d d)>, (1)

where (¢) = ¢ for ¢ > 0 and zero otherwise, and H is the Heaviside function. In (1), £ and £ are defined in
terms of the cohesive traction 73, the critical strength 7§ and the initial strength 7 as

In the general case, the cohesive traction 15 is specified as an explicit function of the displacement jump J;.
For these models referred to hereafter as damage-dependent models, d and d" in Eq. (1) denote the nor-
malized displacement jumps
83 8
d=—, d" = _27 (3)
9 9
where 05 is the crack opening displacement, J5 is the critical crack opening displacement and 5131 is refer-
red to as the hardening displacement, i.e., the displacement jump corresponding to the critical strength 5§
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(Fig. 1). When the initial strength is less than the critical strength (£ < 1), the cohesive model is intrinsic.
When # = 1 with d" = 0, it represents the extrinsic model. The area under the traction-separation curve
represents the fracture toughness and has a simple closed-form expression when the model is damage
dependent. However, only a numerical solution is possible for the cohesive zone variables d; and 73 when
the cohesive model is damage dependent, i.e., when d in (1) denotes the normalized displacement jump as in
(3). A closed-form expression for the cohesive zone variables is however possible under steady-state
propagation conditions when the cohesive traction t; is no longer an explicit function of the displacement
jump 3 but is expressed in terms of the cohesive zone coordinate x; and this simplified case, referred to
hereafter as spatially dependent cohesive models.

In that case, the variables d and d" entering (1) are defined by

X1 dh _ ﬁ

d= T ’
L, L,

(4)

where L., is the cohesive zone length and L, is the portion in the cohesive zone in which strengthening
occurs and henceforth referred to as the hardening length, i.e, the spatial position corresponding to the
critical strength 75. The spatially dependent and damage-dependent models have similar solution charac-
teristics. Therefore, closed-form solutions obtained for the spatially dependent cohesive law provide
valuable insight on the cohesive modeling of fracture.

3. Transient spontaneous crack propagation

A numerical technique recently developed for the analysis of fundamental dynamic fracture problems,
the spectral scheme (Geubelle and Rice, 1995) is used here to simulate the spontaneous transient motion of
a mode 3 crack. The spectral scheme is a special form of the elastodynamic boundary integral formulation
and is best suited for the analysis of the failure process taking place in the vicinity of a spontaneously
propagating planar crack embedded in an infinite, linearly elastic medium. It allows for the incorporation
of a wide range of intrinsic and extrinsic cohesive failure models. The integral relation between the traction
stresses acting on the fracture plane and the resulting displacement jump and its rate for a mode 3 crack was
implemented by Morrissey and Geubelle (1997). The expression relating the traction on the fracture plane
to the displacement jump and its rate is given by

53()61 N t)

S

3(xn, 1) = 15 (v, 1) — + f3(x1, 1), (5)
where 73 and J; respectively denote the traction stress and displacement jump along the plane x, = 0, 13
corresponds to the externally applied stress that would be present on the fracture plane in the absence of the
crack, u is the shear modulus and ¢; = /u/p is the shear wave speed with p being the density of the
material. In the above equation, f; is the convolution term and is expressed in the Fourier domain as a
convolution over the past displacement jump history as

{53()61, t)7f3(x17 t)} = {D3(k7 t)>F3(k7 t)}eikvl ’ (6)
with
_ k| ' ' )
E(k,t) = — H;(|k|est ) Ds(k,t — £)|k|csdt, (7)
where £ is the spectral mode number. In (6) and (7), F3(k,¢) and D;(k,¢) are the time-dependent Fourier

coefficients of the convolution term f3(x;,¢) and crack opening displacement J5(x,¢), respectively. The
convolution kernel H3 for the mode 3 case is given by
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where J; is the Bessel function of the first kind. Similar relations have been derived for the other fracture
modes (Geubelle and Rice, 1995). To simulate the spontaneous motion of the planar crack, the integro-
differential relation (5) on the fracture plane needs to be supplemented with a cohesive failure model and in
the present study, the general intrinsic damage-dependent cohesive law (1) is used.

To understand the effect of the various parameters entering the general cohesive law (1) on the transient
motion of the mode 3 crack, the model fracture problem shown in Fig. 2 is solved. A 2-D planar crack of
initial length @, subjected to uniform antiplane shear loading propagates spontaneously along the fracture
plane. Crack growth is restricted to half of the domain length (X /2) to avoid the replication effects that arise
due to the spectral representation (6) (Geubelle and Rice, 1995). The length X of the domain is set to 16a,. The
accuracy of the spectral scheme depends on the number of terms chosen in the Fourier series representation of
the solution. A convergence study was performed by varying the number of sampling points from 256 (2%) to
8192 (2'3), and revealed that a minimum of 1024 (2'°) terms are required to obtain spatial convergence. This
discretisation leads to a sampling point spacing Ax = a,/256. The time step size Ar = 0.2Ax/c; is used to
achieve a numerically stable solution. In our simulations, the shear modulus and the maximum strength are
chosen to be u =10 MPa and 1§ =1 MPa, respectively. The critical crack opening displacement 05
(a0/55 < &5 < ap/30) and hardening displacement 8} (0.0155 < 8% < &5) are varied in the present study.

Snapshots of the normalized crack opening profile d; are shown in Fig. 3. The extent of the cohesive zone
is indicated by the horizontal dotted lines d;/05 = +1. These snapshots were recorded at constant time
intervals of ¢;Az/ay = 0.65. As apparent in the figure, the separation distance between successive crack
profiles is almost constant, indicating that the crack has reached a quasi-steady state propagation regime.
The crack tip position of the respective snapshots corresponding to both the extrinsic and intrinsic models
are almost at the same spatial position, which indicates that the propagation velocity of the crack is the
same for these two models. Due to lack of cohesion at the cohesive zone tip in the intrinsic model, the entire
crack plane separates by the initial displacement J; given by

5_B% ©)
0y 15 05
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Fig. 3. Comparison of the crack profiles for extrinsic (case ‘a’) and intrinsic (case ‘b’) cohesive models. To avoid overlapping, the
profiles for the intrinsic cohesive model are shown as negative. The profiles are for an external load of t = 0.67§ and critical crack
opening 05 = 0.0267ay. The hardening displacement was chosen to be 6;‘ = 0.205 in the intrinsic model.
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Fig. 4. Traction stress and opening displacement history at a point located at a distance 4.4a, away from the initial right crack tip. The
critical crack opening displacement is 85 = 0.0267a, and the crack is subjected to a loading of amplitude 75 = 0.575. The intrinsic
models considered here have an initial strength ti = 0. With decrease in the hardening displacement (52 the curves for the displacement
history tend towards the extrinsic model (solid curve).
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As apparent in Fig. 3, the length of the cohesive zone is larger for the intrinsic model compared to that
obtained for the extrinsic model and the crack opening profile is quite different.

The effect of varying the hardening displacement (313‘ is illustrated in Fig. 4 by tracking the shear stress o3
and opening displacement J; at a point located at a distance 4.4a, away from the initial right crack tip. The
crack has reached a quasi-steady state of propagation when it has arrived at this point of observation. In
the extrinsic case, the displacement remains zero until the crack reaches the observation point and the
cohesive failure begins only once the cohesive zone tip reaches this point. Once the crack tip reaches the
point of observation, the cohesive traction vanishes. With the intrinsic cohesive model, the scenario is quite
different: at the instant the load is applied, the entire crack plane separates as the cohesive traction becomes
equal to the applied loading. As mentioned earlier, the initial displacement increases with the hardening
displacement (Eq. (9)). As the crack approaches the observed point, the crack opening displacement in-
creases, which triggers the strengthening process. Once the cohesive tractions reaches the maximum (criti-
cal) strength, the weakening process begins. The opening velocity, which remained small during the
strengthening phase, increases rapidly in the weakening portion. The opening velocity and the rate of decay
of the cohesive tractions in the weakening portion increase with the hardening displacement, resulting in a
reduction of the duration of the weakening process. The duration of the cohesive action in the intrinsic
model includes both the hardening and weakening processes, as opposed to the exclusive weakening process
in the extrinsic model. Since the crack has reached a quasi-steady state of propagation when it reaches the
observation point, a longer duration of the cohesive failure process in the intrinsic model directly translates
into a longer cohesive zone. This increase in the cohesive zone length is also illustrated by the crack profile
snapshots shown in Fig. 3. With the decrease in the hardening displacement, the weakening portion for the
intrinsic model tends towards the extrinsic model. Theoretically, when 52 is zero, curves from both the
extrinsic and intrinsic models will become coincident.

It is also worth noting however that, as the hardening displacement 5? decreases, the numerical im-
plementation of the intrinsic model becomes increasingly unstable. To investigate this issue of stability, a
systematic error analysis has been performed to determine the maximum value of the time step size
(characterized by the non-dimensional parameter f§ = ¢;At/Ax) that provides a converged and stable so-
lution. The simulations were performed with 2048 term in the Fourier series, and the intrinsic cohesive
models had 7, = 0. The reference value of  was chosen as B = 0.1 since this value led to a time-converged
solution for the entire range of the hardening displacement tested in this study (0.01 < 52‘ /95<0.05). The
error measure used to quantify numerical convergence was chosen as the relative difference (¢) on the time
integral of the traction stress 73 recorded at a distance ay ahead of the initial crack tip:

g dom@dr (10)

R (1) dr

where t5(7) corresponds to the reference time history corresponding to B =0.1 and the integration is
performed from ¢ = 0 until the end of the failure process (¢ = T') at the point of observation. The solution is
said to be time converged when ¢ < 1%. For higher values of the time step (Az or ff), numerical oscillations
begin to affect the precision of the solution (as illustrated in Fig. 4) and may ultimately lead to the complete
instability of the numerical scheme. The resulting stability map is presented in Fig. 5, in which the
aforementioned effect of the hardening displacement on the stability of the numerical scheme is clearly
visible. It is worth noting that the implementation of the extrinsic model achieves convergence for f = 0.4.

The crack profiles obtained for the general cohesive model with i > 0, are similar to those for the in-
trinsic case (75 = 0) shown in Fig. 3. As expected, when the applied load is greater than the initial strength,
the entire crack plane separates by 03 before the actual cohesive process begins, while for loads less than the
initial strength the initial displacement is zero. The initial displacement 05 in terms of the external load,
initial strength and hardening displacement is given by
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where (¢) = ¢ for ¢ > 0 and zero otherwise.

The energetics involved in the failure process for a general cohesive model is depicted in Fig. 6, which
presents the history of the rate of energy release defined as

E3:/r353dx, (12)

where 85 is the crack opening velocity. The integration in Eq. (12) is performed over the cohesive length L,
defined as the portion of the fracture plane for which &, < d; < 5, where 3} is the initial displacement of the
entire crack plane defined in Eq. (11). The rate of energy release is normalized by the fracture toughness G5
given by the area under the traction—separation curve

T8 [, B
“="3 (*a& (13)

Note that for any combinations of non-zero initial strength and hardening displacement, the fracture
toughness for the intrinsic model is greater than the extrinsic model for the same critical strength (75) and
critical crack opening displacement (05). The effect of applying a loading amplitude either greater or smaller
than the initial strength is also illustrated in this figure. When the loading amplitude is less than the initial
strength, the energy evolution for both the extrinsic and intrinsic models are similar. Note also the existence
of a quasi-steady-state regime of propagation indicated by the quasi-constant value of the rate of energy
release attained after the crack has grown by a sufficient distance. The above observation is the motivation
for the steady-state analysis presented next.
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4. Steady-state propagation

We now consider the basic problem of a semi-infinite crack propagating at a steady velocity v, under
anti-plane strain conditions in a linearly elastic solid. A moving Cartesian coordinates (x,x,) is defined
with its origin following the crack tip. The crack is subjected to an external crack plane loading 13 over the
entire crack plane, as shown in Fig. 7. The material properties in this steady-state analysis are chosen to be
the same as that in the spontaneous crack propagation simulations (z§ =1 MPa, y =10 MPa). Under
steady-state propagation, the slope of the displacement jump is related to the cohesive tractions by the
Cauchy singular integral equation (Kubair et al., 2003)

Ayt [Nkt
5/)6:——3/\/: di’[, 14
) o Jo Vn(x—n) (14)
X2
\% T;’
© ®@ ® @
% %@ © 0 e © o ©
= o © 9 o 'e o
o o 9 o cohesive zone
v “

C

Fig. 7. Steady-state fracture problem.
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where 6, = dd;/dx, ¢ has been defined in (2), and

LN S (15)

: 1— (ve/e,)’
L, is the length of the cohesive zone, which is determined by satisfying the following condition at the
cohesive zone tip:

S(x=1) =&, (16)

where 85 is the critical crack opening displacement. As mentioned earlier, a closed-form expression for d} is
possible only for a spatially dependent cohesive law. For some general damage-dependent cohesive law, a
numerical quadrature of the governing Cauchy singular equation is required to obtain a solution. Details of
the numerical quadrature and Picard’s iteration schemes can be found in the paper by Kubair et al. (2003).

The damage-dependent intrinsic model introduced in Section 2 has been analyzed under steady-state
conditions and our results show that physically meaningful results are possible only for a range of non-zero
values of the initial strength ti. Similar observation have been made by Ungsuwarungsri and Knauss
(1988b) in their analysis of equilibrium crazes: they concluded that only limited strengthening was possible
under steady-state propagation. However, our spectral simulations did not exhibit any numerical difficulty
in the solution procedure. In order to illustrate the non-existence of a physically meaningful solution for a
range of initial strengths 1%, a closed-form expression for J; using the spatially dependent cohesive model
described by Egs. (1), (2), (4) has been obtained:

T g A T oo L) IS D
A3T§53(C)—2(1 T%){ Lhtanh { C] 1} Lh+2r§tanh [\/_;]

(1 —/Ln/Le) | ¢ 2 ¢ IR /7 R /N
L, \/L_ﬁl—Lh/Lc}(l_L_c;)(tanh [T]_tdnh {?D
(17)

where { = —x; = 0. This solution for the spatially dependent cohesive law is similar to that obtained with
the damage-dependent cohesive law and will be illustrated later with the results. The closed-form solution
(17) for the spatially dependent model shows that a physically meaningful solution for &} is possible only for
a range of initial strengths t}. Indeed, an analysis of the closed-form expression for &5 (Eq. (17)) reveals
that, when i = 0, the second slope of the displacement (d3), which is analogous to crack opening accele-
ration (J3), becomes negative at the cohesive tip. The negative opening acceleration leads to a nega-
tive energy (1305 < 0), violating the second law of thermodynamics and hence physically unacceptable
(Costanzo and Allen, 1995). Under mode 1 loading, a negative crack opening acceleration and velocity
lead to interpenetration of the crack faces, which is again physically unrealistic. A closed-form expression
relating the minimum initial strength required ‘Egmin and the hardening length L, was obtained by imposing
a zero value for the crack opening curvature at the cohesive zone tip:

lim[y/x0" ] =0=1, = &

At w14 Ly

For the damage-dependent model, a closed-form expression for the required minimum initial strength is not
possible. However we found the following expression

YLy € (0, L,). (18)

C
T3

R (19)
1+p 52/5‘;

3min
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Fig. 8. Minimum initial strength required to obtain a physically meaningful steady-state solution as a function the hardening distance
Ly, (for the spatially dependent model) and the hardening displacement (5}3‘ (for the damage-dependent model). The functional form of
7, s given by Egs. (18) and (19).

to fit the numerical values quite well with = 2.5. The minimum initial strength required (13 )asa
function of the hardening length (Z;) and hardening displacement (5h) is shown in Fig. 8. A similar study
using the trapezoidal cohesive model analogous to that used by Tvergaard and Hutchinson (1992) is
summarized in Appendix A. To conclude this discussion of the minimum value of the initial strength, it is
interesting to note that the existence of a similar negative opening velocity has also been observed by
Marder and Gross (1995) in their quasi-steady state 1-D and 2-D molecular dynamics simulations of
fracture instabilities with a quite different fracture model.
The length L, of the cohesive zone can be determined by satisfying the following condition:

TCT3\/7 / _{E ﬂ_"_;}’ (20)
A3 15 \/_ 318\ Ly 1+ +/Ln/L,

for the spatially dependent cohesive model. From the above expression, we can see that the amplitude of the
externally applied load is always less than the initial strength 7 under steady-state propagation conditions.
Similar conclusions about the loading amplitude in the damage-dependent model can be reached due to the
similarity between the spatially dependent and damage-dependent models. _

As seen from the spectral scheme simulations, the entire crack plane separates by an amount J; (Egs. (9)
and (11)), when the initial strength is zero or when the applied load is greater than the initial strength.
Steady-state solution with a prescribed initial displacement is possible by superposing a constant opening
displacement, as it does not alter the governing Cauchy singular equation (14). However, our steady-state
analysis showed that only initial displacements corresponding to an initial strength 7 > rgmin converge
to a physically meaningful solution and the relation between the initial displacement and initial strength
is given by
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G_ (B \% (1)
3 -1 )05

In order to compare results from the spectral scheme with those obtained in the steady-state case,
the point history of the cohesive traction 73 and crack opening displacement J; have been tracked at
a point sufficiently far away from the initial crack tip position (4.4ap), where quasi-steady-state of
propagation prevailed in our simulations (Fig. 9). The spatial coordinates of the steady-state solution
have been transformed into time for the sake of comparison and the two solutions are in good
agreement.

The spatial distribution of the slope of the crack sliding displacement in the cohesive zone is shown in
Fig. 10. As mentioned earlier, under steady-state propagation conditions, d; is equivalent to the crack
sliding velocity d;. In the intrinsic model, the discontinuity in the slope of the cohesive traction/separation
curve results in an inflection point in the spatial variation of 5/3 at x; = L,. However, the variation of J} in
the weakening portion of the cohesive zone is similar to that for the extrinsic model and can be attributed to
the same damage mechanism taking place in both models.

The normalized crack opening profiles for both the extrinsic and intrinsic models are shown in Fig. 11.
In order to compare the crack opening profiles obtained from the spectral simulations, the initial strength
and hardening displacements are chosen to be the same as those in the results shown in Fig. 3. The cohesive
zone is longer in case of the intrinsic model as indicated by the smaller amplitude of the opening dis-
placement at the cohesive zone tip (J5/L.,) for the intrinsic model. As seen from the spectral results (Fig. 3),
the crack opening profiles in the intrinsic model has two distinct variations in the cohesive zone, one below
and another above the hardening displacement d;. The variation of the crack opening displacement in the
weakening region is similar to that obtained with the extrinsic model.
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Fig. 10. Slope of the displacement jump for the extrinsic and intrinsic cohesive models. For the damage-dependent model, 7, = 0.61§
and ) = 0.255.
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Fig. 11. Crack sliding profile in the cohesive zone for the extrinsic and intrinsic cohesive models. The fracture parameters in this figure
are identical to those in Fig. 10. The opening profiles are similar to those obtained by the spectral scheme shown in Fig. 3.
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5. Conclusions

A comparative analysis of extrinsic and intrinsic cohesive models has been performed under both
spontaneous and steady-state dynamic crack propagation conditions. The results of the spontaneous
simulations indicate that the implementation of intrinsic models is less numerically stable than that of the
extrinsic models. The propagation velocity and energetics of the crack obtained with the intrinsic and
extrinsic models are similar but details of the cohesive zone, namely the cohesive zone length and the crack
opening profile, are somewhat different.

Under steady-state propagation conditions, a vanishing initial strength at the cohesive zone tip leads to a
negative crack opening acceleration, which in turn leads to negative crack opening slope, leading to a
physically unacceptable solution. By imposing a positive crack opening acceleration at the cohesive zone
tip, the envelope of the minimum initial strength required was calculated in terms of the hardening dis-
placement (or length).
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Appendix A. Cohesive model with dwell portion

We obtain here the steady-state solution for the more general intrinsic cohesive model shown in Fig. 12
and expressed by

- d . 1-d
t= <[(1 — )+ t‘}H(dh —d)+H(d—d") + {1 — I}H(d — dd)>, (A1)
1.2 1 1 1 1
e dwell I
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Fig. 12. Intrinsic cohesive law similar to the trapezoidal model introduced by Tvergaard and Hutchinson (1992).
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where d¢ is the dwell distance which is defined as d¥ = Ly4/L., for a spatially dependent model and
dd =83/ for a damage-dependent model, with 8 being the dwell displacement. When d" = d¢, (A.1)
reverts to (1) and, when # = 0, (A.1) recovers the Tvergaard and Hutchinson (1992) trapezoidal cohesive
model in the damage-dependent case. Closed-form expression for the slope of the displacement jump is
possible for the spatially dependent model, and is given by

T 5/(():2(1—3)  tanh™! [\/L:ﬂ_l 0=Vt &

Ayts 3 75 Ly Ly 1 —Lg/Le, '\ L,
+21—g tanh ™! {,/ﬂ} +2tanh™' { &} —2tanh”! { &}
73 ¢ { V ¢
s () (o [y = [
+——+—(1—-— || tanh —2| — tanh —1 1, A2
o ) : : A2

where { = —x; = 0. As expected, when the hardening length and the dwell length are the same, the above
equation recovers Eq. (17).

The minimum initial strength required to obtain physically meaningful results under steady-state
propagation conditions is found by limiting ,/x7d}(x; — 0) = 0 and is given by

‘Ci3_man_1_l & (1—\/Ld/L03)\/Lh/ch_(1_th/Lca). (A.3)

’L'g 2 Ld 2(1 _Lh/Lc3)

Note that this minimum initial strength is greater than the minimum initial strength given by Eq. (18) when
ds > d".
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